An in-situ synthesis of Ag/AgCl/TiO2/hierarchical porous magnesian material and its photocatalytic performance

نویسندگان

  • Lu Yang
  • Fazhou Wang
  • Chang Shu
  • Peng Liu
  • Wenqin Zhang
  • Shuguang Hu
چکیده

The absorption ability and photocatalytic activity of photocatalytic materials play important roles in improving the pollutants removal effects. Herein, we reported a new kind of photocatalytic material, which was synthesized by simultaneously designing hierarchical porous magnesian (PM) substrate and TiO2 catalyst modification. Particularly, PM substrate could be facilely prepared by controlling its crystal phase (Phase 5, Mg3Cl(OH)5 · 4H2O), while Ag/AgCl particles modification of TiO2 could be achieved by in situ ion exchange between Ag(+) and above crystal Phase. Physiochemical analysis shows that Ag/AgCl/TiO2/PM material has higher visible and ultraviolet light absorption response, and excellent gas absorption performance compared to other controls. These suggested that Ag/AgCl/TiO2/PM material could produce more efficient photocatalytic effects. Its photocatalytic reaction rate was 5.21 and 30.57 times higher than that of TiO2/PM and TiO2/imporous magnesian substrate, respectively. Thus, this material and its intergration synthesis method could provide a novel strategy for high-efficiency application and modification of TiO2 photocatalyst in engineering filed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of mesoporous TiO2-SiO2-Ag and investigation of its structural and photocatalytic properties under visible light and ultra-violate

In this project, mesoporous titanium oxide-silicon oxide doped by silver (TiO2-SiO2-Ag) was hydrothermally synthesized. Titanium isopropoxide, tetraethyl orthosilicate and silver nitrate were used as precursors for TiO2, SiO2 and Ag, respectively. Initially TiO2-SiO2 mesoporous nanocomposite was synthesized with weight ratios of silica to titania SiO2:TiO2:3:1 via hydrothermal method at 70˚C an...

متن کامل

Formic Acid Decomposition Using Synthesized Ag/TiO2 Nanocomposite in Ethanol-Water Media Under Illumination of Near UV Light

The effect of ethanol-water media on the synthesis of Ag/TiO2 nanocomposite was investigated with 0.05, 0.1 and 0.5 (wt.%) of Ag content. Ethanol was used as hole-scavenger enhancing the photodecomposition of Ag+ ions under illumination of near-UV light. The nanocomposites were further calcined to 300˚C and 400˚C under controlled atmosphere. The synthesized nanocomposites were tested for photoc...

متن کامل

Biochemical Synthesis of Ag/AgCl Nanoparticles for Visible-Light-Driven Photocatalytic Removal of Colored Dyes

Photocatalytic removal of organic pollution such as waste colored dyes was a promising technique for environment technique. However, effective photocatalysts were needed to enhance the photocatalytic efficiency. Ag/AgCl was regarded as high performance catalyst for photocatalytic degradation. Ag/AgCl nanoparticles were biochemically prepared with metabolin of living fungi which was used as redu...

متن کامل

Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions.

Herein, we demonstrate the design and fabrication of the well-defined triple-shelled Ag@Fe3O4@SiO2@TiO2 nanospheres with burr-shaped hierarchical structures, in which the multiple distinct functional components are integrated wonderfully into a single nanostructure. In comparison with commercial TiO2 (P25), pure TiO2 microspheres, Fe3O4@SiO2@TiO2 and annealed Ag@Fe3O4@SiO2@TiO2 nanocomposites, ...

متن کامل

Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity.

Hierarchical porous F-doped TiO2 microspheres exhibiting high visible light photocatalytic activity have been fabricated by a one-step low-temperature hydrothermal approach without using any templates.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016